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Abstract  

Dynamic programming offers tools to mathematically describe the effects of continuously 

executed processes. Policymakers or Process owners in companies could use dynamic 

programming to find the optimal use of such processes. This article aims to show the use of 

dynamic programming to develop a plan for the dynamic withdrawal of funds from interest-

bearing assets. 
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Abstrakt  

Dynamické programovanie ponúka nástroje na matematický opis účinkov nepretržite 

vykonávaných procesov. Tvorcovia politík alebo vlastníci procesov v podnikoch by mohli 

dynamické programovanie využívať na hľadanie optimálneho využitia takýchto procesov. 

Cieľom tohto článku je ukázať využitie dynamického programovania za účel vytvoreniu plánu 

pre dynamický výber financií z úročiacich aktív. 
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1 Introduction 

In this article, we will show the utilisation of Bellman Dynamic Programming on simple 

problems. The basic idea of Dynamic Programming is to solve a problem using a divide-and-

conquer approach wherein the solutions of overlapping subproblems are reused to avoid 

recalculating solutions. Toth Horowitz and Sahni presented an improved dynamic programming 

algorithm for solving the knapsack problem (Chebil & Khemakhem, 2015). Generally, dynamic 

programming-based algorithms are efficient and easy to implement, particularly for small and 

medium-sized instances. We will show some applications of such matter in various problems 

across the world. In the end, we developed mathematical model inspired by reproduction model 

that create plan that will maximise the profit with highest liquidity form. 

2 Literature review 

The main idea of Dynamic Programming (DP) is to decompose the problem into more 

manageable subproblems. Computations are then carried out recursively, where the optimum 

solution of one subproblem is used as an input to the next subproblem. The optimum solution 

for the entire problem is at hand when the last subproblem is solved. How the recursive 

computations are carried out depends on how the original problem is decomposed. In particular, 
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the subproblems are usually linked by typical constraints. The feasibility of these common 

constraints is maintained at all iterations (Taha et al., 2017). 

The central recursive equation expresses the shortest distance 𝑓𝑖(𝑥𝑖) at stage i as a 

function of the next node 𝑥𝑖+1. Here, i ranges over the finite set of stage indices I={0,1,…,N}, 

so each value of i labels a specific decision stage in the process. In dynamic programming 

terminology xi is the state at stage i. The state links successive stages in a way that allows 

optimal decisions at a future stage to be made independently of all choices at preceding stages. 

Defining the state in this manner leads to the following unifying framework for dynamic 

programming (Sieniutycz & Jeżowski, 2013). 

Future decisions for all future stages constitute an optimal policy regardless of the policy 

adopted in all preceding stages. The principle of optimality does not address how a subproblem 

is optimised. The reason is the generic nature of the subproblem. It can be linear or nonlinear, 

and the number of alternatives can be finite or infinite. All the principle of optimality does is 

“break down” the original problem into more computationally tractable subproblems (Taha et 

al., 2017).Table 1 crystallises the standard finite-horizon dynamic-programming framework by 

cataloguing the temporal index, state and control manifolds, admissible boundary sets, cost 

functionals, and deterministic state-transition operator that underpin the subsequent analytical 

developments. 

 

Tab. 1: Description of the elements of dynamic programming definition 

Symbol Meaning 

T 

The finite planning horizon, i.e., the number of stages (time-steps) in the decision 

process. Stages are indexed t=0,1,…,T. In a finite-horizon problem T is fixed; in an 

open (indefinite) horizon it may vary or be chosen optimally. 

t Continuous time variable or in other words stage, t∈[0,T] . 

Q The action (control) set – all decisions q(t)that are admissible at any stage t. 

X The state space – all system states x(t)that are allowed during the horizon. 

P⊆X The set of admissible initial states. At t=0 the process must start in one of these states. 

C⊆X 
The set of admissible terminal (goal) states. At the final stage t=T the state must lie 

in this set. 

x(t) The state variable at stage t, taking values in X. 

q(t) The control (decision) variable at stage t, taking values in Q. 

f(x,q) 
The stage-cost (or reward) function incurred when the state is x and the action q is 

applied. 

f(t,x,q) 
Instantaneous cost (or reward) density incurred at time t when the state is x and the 

control is q. 

g(t,x,q) State-transition (dynamics) function giving (time derivative) ẋ(t)=g(t,x(t),q(t)) 

Source: Processed from (Laščiak et al., 1983) 

 

There are two types of optimisation methods based on dynamic programming that are 

Discrete dynamic optimisation and continuous dynamic optimisation.  

• Discrete dynamic optimisation, which tries to find such policy from all the possible 

policies (Laščiak et al., 1983). 

The goal is to find a sequence of controls {𝑞(𝑡)}𝑡=0
𝑇−1 such that 
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Controls are noted as: 

 

𝑞(𝑡) ∈  𝑄, for 𝑡 = 0,1, … , 𝑇 − 1                                                                                                (1) 

 

States are noted as: 

 

𝑥(𝑡) ∈  𝑋, for 𝑡 = 0,1, … , 𝑇                                                                                                        (2) 

 

Initial state is noted as: 

 

𝑥(0) ∈ 𝑃                                                                                                                                                   (3) 

 

Terminal state is noted as: 

 

𝑥(𝑇) ∈  𝐶                                                                                                                                                  (4) 

 

and the cumulative cost: 

 ∑ 𝑓(𝑥(𝑡), 𝑞(𝑡))

𝑇−1

𝑡=0

                                                                                                                                    (5) 

 

is minimised (or maximised, depending on the formulation). 

• Continuous dynamic optimisation problem, which tries to find such policy from all 

the possible policies, that finds a control trajectory {𝑞(𝑡)}𝑡∈[0,𝑇] where (Laščiak et al., 1983): 

Controls are noted as: 

 

𝑞(𝑡) ∈  𝑄,   𝑡 ∈ [0, 𝑇]                                                                                                                             (6) 

 

States are noted as: 

 

𝑥(𝑡) ∈  𝑋, 𝑡 ∈ [0, 𝑇]                                                                                                                        (7) 

 

Initial state is noted as: 

 

𝑥(0) ∈  𝑃                                                                                                                                                   (8) 

 

Terminal state is noted as: 

 

𝑥(𝑇) ∈  𝐶                                                                                                                                                  (9) 

 

subject to the system dynamics 

 

ẋ(t) = g(t, x(t), q(t)),     𝑡 ∈ [0, 𝑇]                                                                                                      (10) 

 

and cumulative COST, that represents cost regarding the optimisation 

 

𝐶𝑂𝑆𝑇 = ∫ 𝑓(𝑡, 𝑥(𝑡), 𝑞(𝑡))𝑑𝑡
𝑇

0

                                                                                                         (11) 
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is minimised (or maximised, depending on the formulation). 

There exists two horizon types (Carlson et. al., 1991): 

• Finite-time horizon: T is prescribed and constant; optimisation is performed over the 

fixed interval [0,T]. 

• Open (indefinite) horizon: T is not predetermined; it may depend on the policy or be 

itself a decision variable, leading to problems where the optimal stopping time is part 

of the solution. 

Another characteristic of the dynamic programming approach is developing a recursive 

optimisation procedure, which builds to a solution of the overall N-stage problem by first 

solving a one-stage problem, sequentially including one stage at a time, and solving one-stage 

problems until the overall optimum has been found. This procedure can be based on a backward 

induction process, where the first stage to be analysed is the final stage of the problem, and 

problems are solved, moving back one stage at a time until all stages are included. Alternatively, 

the recursive procedure can be based on a forward induction process, where the first stage to be 

solved is the initial stage of the problem, and problems are solved moving forward one stage at 

a time until all stages are included. In specific problem settings, only one of these induction 

processes can be applied (e.g., only backward induction is allowed in most problems involving 

uncertainties). The basis of the recursive optimisation procedure is the so-called principle of 

optimality, which has already been stated: an optimal policy has the property that, whatever the 

current state and decision, the remaining decisions must constitute an optimal policy about the 

state resulting from the current decision (Massachusetts Institute of Technology, 2015). Those 

methods are:  

1. Top-down method 

2. Bottom-up method 

The top-down method solves the overall problem before breaking it into subproblems. 

This process solves more significant problems by recursively finding the solution to 

subproblems, caching each result. This memorisation process helps avoid solving the problem 

repeatedly if it is called more than once. The top-down method, can return the result saved as it 

was solved in the context of the overall problem, thus storing the results of already solved 

problems. The most common related process is called forward induction (Jaffar et al., 2008). 

The bottom-up—or tabulation—method works in the opposite direction. It evaluates all 

sub-problems in an order that guarantees every dependency is already known when needed, 

then stores those answers in a table. Because there may be many indices (stage, capacity, 

remaining time, etc), the table is typically n-dimensional, where n represents 

the number of independent indices that characterise a sub-problem, while (n ≥ 1). Earlier we 

used the capital N for “the number of stages” in a discrete model. Here the lower-case n simply 

counts how many indices are required to label sub-problems; it is unrelated to N. Once every 

entry of the table is filled, the value of the original problem is read directly from the appropriate 

cell. Computing the table from the “end” of the decision process toward the “start” is known as 

backward induction (Wimmer et al., 2018). 

Forward and backward induction always return the same optimal value. Nevertheless, 

most dynamic-programming textbooks and software libraries default to backward induction 

because, in many practical models, it stores fewer intermediate states and therefore runs faster 

(Taha et al., 2017). 

Backward induction is determining a sequence of optimal choices of action by employing 

reasoning backwards in sequence, from the end of a problem or situation to its beginning, choice 

by choice. It proceeds by examining the last point at which a decision is to be made and then 

identifying the most optimal choice of action. Using this information, one can determine what 

to do at the second-to-last point of the decision. This process continues backwards until one has 

determined the best action for every possible point along the sequence (Matias et al., 2023). 
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However, the Bellman optimality Principle is the method that made dynamic 

programming a respected part of mathematics. Bellman's optimality principles are suitable for 

optimal conditions for inherently discrete processes. Nevertheless, under the differentiability 

assumption, the method only enables an easy passage to its limiting form for continuous 

systems. The application of the method is straightforward when it is applied in the optimisation 

of control systems without feedback. Dynamic programming (DP) is crucial for the optimal 

performance potentials discussed in this book and for deriving pertinent equations that describe 

these potentials. The DP method is based on Bellman’s principle of optimality. It makes it 

possible to replace the simultaneous evaluation of all optimal controls with sequences of local 

evaluations at sequentially included stages for evolving subprocesses (Matias et al., 2023). 

Description of the elements in Tab. 2 and in formulas below are completely separated 

from previous notations of elements and formulas. 

 

Tab. 2: Description of the elements of Bellman's Expectation Equation in deterministic cases 

Symbol Definition 

s A state the agent can occupy. 

a An action chosen in state s. 

s′ The next state reached after taking action a. 

V(s) The value (expected return) associated with state s. 

R(s,a) The immediate reward received when action a is executed in state s. 

γ∈[0,1) The discount factor that down-weights future rewards. 

π={π1,π2,…,πI} 
A finite collection of candidate policies (instruction sets) among 

which we search for the optimal one. 

I 
The number of policies in that set. We enumerate the options as 

π1,π2,…,πI to keep track of each distinct strategy. 

Source: Processed from (Bellman, 1954) 

 

The most basic Bellman's Expectation Equation for optimising value can be stated as 

(Bellman, 1954): 

 

𝑉(𝑠) = max
𝑎

(𝑅(𝑠, 𝑎) + 𝛾𝑉(𝑠´))                                                                                                       (12) 

 

During backward (bottom-up) induction the agent starts at the goal, assigns terminal 

values, and then works backward through the state space, filling in V(s) by applying the Bellman 

equation. At each step it picks the action a that maximises the bracketed expression, thereby 

choosing the policy πi that ultimately delivers the highest cumulative reward. In Tab.3, is 

depicted the exemplar solution where 𝛾 = 0.9: 
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Tab. 3: Example of space sweeping by agent 

V=0.81 

(0+0.9*(0.9)) 

a* = → 

V=0.9 

(0+0.9*(1)) 

a*  = → 

V=1 

(1+0.9*(0)) 

a*  = → 

R=+1 

(Goal) 

V=0.73 

(0+0.9*(0.81)) 

a*  = ↑ 

R=-M V=0.9 

(0+0.9*(1)) 

a*  = ↑ 

R=-1 

V=0.66 

(0+0.9*(0.73)) 

a*  = ↑ or → 

(Start) 

V=0.73 

(0+0.9*(0.81)) 

a*  = → 

V=0.81 

(0+0.9*(0.9)) 

a*  = ↑ 

V=0.73 

(0+0.9*(0.81)) 

a*  = ← 

Source: Own Elaboration 

 

When the agent calculates all the known V(s) values, it can use a greedy algorithm to find 

the policy, leading him from the start to the goal. After the application of the greedy algorithm, 

the resulting optimal policy will be: πi = ↑↑→→→ or →→↑↑→ 

In dynamic programming, while we use the bellman method with the top-down method, 

we select a policy based on its reward. The agent always chooses the optimal action. Hence, it 

generates the maximum reward possible for the given state. In our problem, we will use this 

greedy algorithm, named the economic strategy (Baeldung, 2023). 

If we used the tree diagram to calculate all the possibilities of the problem for the given 

number of iterations, we could use backward induction to find the optimal solution where we 

are exercising the reward (or payoffs) without the need for exploration. This effect is obtained 

because backward induction has the final values of all previous policies, so it can more easily 

determine the optimal action from all possibilities.  

 

Fig. 1: Diagram depicting decisions between methods in DP of the agent 

 
Source:(Baeldung, 2023) 

 

In epsilon-greedy action selection, the agent uses both pathways, exploitation, to take 

advantage of prior knowledge and exploration to look for new options. Converging policy 

evaluation could achieve a similar effect. 

We can use both Bellman equations to find a solution that will converge to the optimal 

solution by the policy and the value. This converging solution principle is called Generalized 

Policy Iteration (GPI), defined as any interaction of policy evaluation and policy improvement, 

independent of their granularity. In Fig 2, the GPI works as depicted in the conceptual model, 

that means the GPI is constantly switching between finding the optimal policy π∗ (a decision 
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rule that maximises expected return from every state,) and the optimal state-value 
function v*. Fig 3 depicts those two improving evaluations' convergence to the optimal solution.  

 

Fig. 2: Depicment of Generalized Policy Iteration Mechanism 

 
Source: (Sutton et al., 2018) 

 

Fig. 3: Convergence to most effective solution possible 

 
Source: (Sutton et. al., 2018) 

 

Dynamic programming is an excellent tool with wide application in various management 

optimisation problems. The first reason is that dynamic programming is centred around the 

effects of time. As we said before, ecological activities require some time to take effect, while 

this effect can be halted or boosted through additional activities in the time window. The second 

parameter, which could modify Bellman's optimisation equations, is stochastic values. In 

environment management, it is impossible to perfectly predict all outcomes and all the effects 

that could show up through the optimising process.  

There are many models regarding dynamic programming. The most famous methods are: 

• Workforce size model, where there could be a construction project that runs week by 

week. For every week the site manager knows the minimum number of workers that 

must be on the job to meet schedule targets. The company can raise the crew above 

that minimum by hiring extra people and can reduce it by letting workers go (So & 

Kek, 2020). 
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o Holding extra workers. Keeping more workers than the minimum costs money 

(overtime, idle time, salaries, benefits, and so on). The larger the surplus, the 

higher the weekly “holding” expense. 

o Hiring new workers. Bringing additional people onto the crew from one week 

to the next triggers a separate “hiring” cost that covers recruiting, onboarding, 

and training. 

o Firing workers. In this simplified version of the model, letting employees go 

is assumed to be free; no severance or rehiring penalty is counted. 

The planner’s task is to decide, for each week of the project, how large the crew 

should be so that the total cost—holding extra staff plus any hiring charges—is as 

small as possible while never dropping below the required minimum. 

Dynamic-programming techniques can then be applied to find the cost-minimising 

schedule (Taha et al., 2017). 

• Equipment- replacement model, that addresses that machines become more expensive 

to own the longer they remain in service: breakdowns grow more frequent, 

maintenance bills rise, and they earn less income. At some point it is cheaper to scrap 

an aging unit and buy a new one. The equipment-replacement model helps a manager 

decide exactly when that should happen over a planning horizon of several years. The 

life cycle of machines could be described in this model as (Lu & Wang, 2013) : 

o Operating year by year. At the start of every year, decision-maker must choose 

one of two actions: 

▪ Keep the current machine for another year, accepting its expected revenue 

and its operating and maintenance cost for that age 

▪ Replace it immediately with a brand-new unit, paying the purchase price 

and then earning the revenue and paying the costs associated with a 

first-year machine. 

o Age-dependent figures. For any given age of the machine the model tabulates 

three numbers: 

▪ the income the machine is expected to generate during that year, 

▪ the expense of running and maintaining it, 

▪ the amount that could be recover by selling or scrapping it at that moment 

(its salvage value). 

o Purchase cost. Buying a new machine always requires the same upfront 

investment, regardless of the calendar year in which it was done. 

By comparing the stream of cash flows that results from “keep” versus “replace” 

decisions in every possible year, the model reveals the most economical schedule: 

how long to hold on to each machine before swapping it for a new one so that total 

profit over the entire planning period is maximised (or total cost is minimised). This 

approach follows the dynamic-programming treatment described by 

Taha et al. (2017). 

• Investment-allocation model, that models situation where an investor plans to inject 

predetermined sums of cash at the beginning of each of the next several years. For 

every new deposit the investor can choose between banks, that offer different 

outcomes. To attract business, each bank also pays a bonus on fresh deposits. The 

bonus is calculated as a fixed percentage of that year’s new money, and the percentage 

can vary from year to year and from one bank to the other. Possible key rules of the 

scheme could be (Yu & Kuang, 2015): 

o Timing of bonuses. The bonus for a given deposit is credited at the end of the 

same year in which the deposit was made. 
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o Reinvestment options. At the start of the following year the investor may 

allocate that bonus—together with the next year’s scheduled cash 

contribution—to either bank, again earning interest and (if it counts as “new” 

money) another bonus. 

o Lock-in period for principal. Once a deposit is placed in a bank, the principal 

must stay there until the final year of the multi-year horizon; it cannot be 

moved between banks or withdrawn early. 

The decision problem is to work out, year by year, which bank should receive each 

scheduled deposit and each newly earned bonus so that the total wealth at the end of 

the planning horizon is maximised. This dynamic-programming formulation is 

adapted from the treatment in Taha et al. (2017). 

• Inventory Models: DP has essential applications in inventory control. 

• Reproduction Model 

• Several algorithms emerged from the definition of dynamic programming, for 

example: 

• Djikstra algorithm: for the shortest path. Dijkstra’s algorithm, published in 1959 and 

named after its creator, Dutch computer scientist Edsger W. Dijkstra, can be applied 

to a weighted graph. The graph can be either directed or undirected. One stipulation 

to using the algorithm is that the graph needs to have a nonnegative weight on every 

edge (Abiy et al., 2017). 

Dynamic programming is an excellent tool, even for more pressing problems that are now 

even more prominent than ever, such as environmental management. The first reason is that 

dynamic programming is centred around the effects of time (Munch & Brias,  2024). As we 

said before, ecological activities require some time to take effect, while this effect can be halted 

or boosted through additional activities in the time window. The second parameter, which could 

modify Bellman's optimisation equations, is stochastic values (Davidsen et al., 2015). In 

environment management, it is impossible to perfectly predict all outcomes and all the effects 

that could show up through the optimising process.  

Several decision-support tools in environmental management exist to deal with different 

degrees of uncertainty. Cost-benefit analysis is a relatively common decision tool to inform 

adaptation employed for deterministic analysis, where variables such as costs and benefits of 

projects/programs are known and can be compared to justify interventions based on an efficient 

allocation of resources. At the other end of the spectrum, tools support decision-making under 

deep uncertainties (DMDU), where many plausible futures are possible, and a broad range of 

solutions or outcomes exist. DMDU tools such as robust decision-making, dynamic adaptive 

policy pathways and accurate options analysis can be handy in these cases (Muccione et al., 

2023). 

Uncertainties might not be profound but instead arise from a lack of information. In these 

cases, uncertainties can be dealt with by using iterative risk management approaches, which 

allow the integration of learning processes into decision-making cycles. Likewise, stochasticity 

or randomness can be appropriate representations for uncertainties in systems whose input 

parameters can be described probabilistically. Recent advances in computational economics 

have developed and applied methods of numerical dynamic programming that integrate 

stochastic or random uncertainties into the decision-making Natural Hazards processes at 

relatively low computational costs. Dynamic programming has been successfully employed in 

environmental decision-making to solve stochastic problems. It is a well-established approach 

in environmental management and the context of water resource management. Dynamic 

programming has been used to address stochasticity in water and food management and include 

ecological quality in the decision-maker's utility function. Besides the direct integration of 

uncertainties into the decision-making process, dynamic programming has several other 
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advantages over alternative methods. One advantage is handling a long-time horizon (e.g., 

several decades with monthly intervals). A second advantage is that stochastic dynamic 

programming can use approximation methods to account for continuous decisions and state 

variables. In addition, stochastic dynamic programming is a flexible framework able to capture 

the optimal trade-offs and synergies in adaptation decision-making by modelling the risk 

preferences of a decision agent under uncertainties (Muccione et al., 2023). 

For example, Muccione et al. (2023) used dynamic programming to present a stylised 

application of stochastic dynamic programming for local adaptation decision-making for a 

small alpine community exposed to debris flows and foods. Fig 4 depicts a schematic 

representation of a single period in the dynamic decision framework. Note that at the beginning 

of each period, the decision maker observes a unique state of the world, i.e. time, riverbed height 

historically maximum vulnerable height of house asset and the realisations of the two shocks 

related to foods, and debris flow. Given that unique state of the world, the decision maker 

considers the possible future stochastic occurrence of foods and debris flow and chooses the 

optimal level of excavation and if the options of dam building or relocation and the building of 

an alternative road should be executed.  

 

Fig 4: Time axis of decisions of example problem 

 
Source:(Muccione et al., 2023) 

 

This variable was transferred into the simulation, which simulated 10,000 randomised 

values. Then, calculations were conducted based on SDP (stochastic dynamic programming), 

and the results were statistics for the expected value of housing assets from 100,000 simulated 

paths and sensitivity regarding the cost of the dam. In addition, the expected value of the house 

assets is lower costs of building and maintaining the dam. All is shown in Fig.5 (Muccione et 

al., 2023), that is just for illustration of possible solution depiction. 

 

Fig 5: Predicted development of the problem in future with the impact of decision maker 

 
Source:(Muccione et al., 2023) 
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3 Results and discussion 

We wanted to apply the methodology of dynamic programming in some sort of simple 

problem in financial management. This problem can be defined as the decision maker wants to 

maximise his profit from investing. The decision maker will make decisions is k years (total 

number of years), and he can make two decisions, he can withdraw some fraction of money or 

will let the stock money grow in value. There are however two main complications.  

First is that the decision maker cannot withdraw all his money in the one go but he can 

withdraw just fraction of it. The second complication is that the investment project is risky and 

there is no guarantee that it is possible to withdraw money after all stages. We have chosen, 

substandard approach for financial management on how to calculate such problem, that is 

reproduction model (RM) that is widely used in environmental management. 

 In the RM literature, there are two models in which agents harvest a resource 

simultaneously. The first model focuses on situations where the resource users diminish the 

relative value per resource unit in the current period as their harvest level increases. However, 

the future value of the resource is undiminished. In contrast, in the dynamic RM, the resource's 

current users reduce the resource's level, thereby harming future users. Uncertainty of resource 

levels tends to promote over-harvesting, while resource scarcity induces greed. Thus, a more 

complete picture can be established by explicitly considering resource dynamics on the one 

hand and macroeconomic and social dynamics on the other. 

There are many modifications to the RM. We even modified the RM for a specific 

problem unrelated to ecology, and the problem is an investment problem where the investor 

tries to make the most money possible from stocks. However, the investor can have three 

different approaches to strategies based on whether the investor prefers the money in cash or 

stock or does not mind, as long as the yield is at the maximum. To formulate such a problem, 

we must first declare sets and variables. 

Description of the elements in Tab 4, 5, 6 and in formulas below are completely separated 

from previous notations of elements and formulas. Sets are described in Tab.4. 

 

Tab. 4: Definition of sets 

Symbol Definition 

T={1,2,…,k} Stages (years of the investment horizon), where k is total number of years. 

I={1,2,…,Z} 
Admissible actions at each stage; Z is the number of distinct withdrawal 

policies that could be considered. 

Source: Own Elaboration 

 

A strategy over the whole horizon is an ordered k-tuple (i1,i2,…,ik) with it∈I for every t. 

The cartesian product Ik is simply the set of all such k-step strategies. Decision variables and 

auxiliary quantities are described in Tab.5. 

 

Tab. 5: Definition of variables and auxiliary quantities  

Symbol Meaning (all evaluated at stage t unless stated otherwise) 

Nt Monetary value of the stock at the start of stage t. 

π𝑡,𝑖𝑡
 Cash withdrawn in stage t when action it is chosen. 

CASH Total cash withdrawn over the entire horizon (objective). 

STOCK Final value of the remaining stock (secondary objective, if needed). 

Source: Own Elaboration 
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Parameters are described in Tab.6. 

 

Tab. 6: Definition of parameters 

Symbol Meaning 

Ͼ Growth (or depreciation) factor that multiplies the stock from one stage to the next. 

𝑎𝑡,𝑖𝑡
 Percentage of stock withdrawn if action it is taken at stage t. 

A 
Regulatory or self-imposed upper bound on the withdrawal percentage in any single 

stage. 

Source: Own Elaboration 

 

There are two objective functions, primary and secondary. Primary goal – maximise total 

cash withdrawals: 

𝐶𝐴𝑆𝐻 = max
(𝑖1,…,𝑖𝑘)∈𝐼𝑘

∑ 𝜋𝑡,𝑖𝑡

𝑘

𝑡=1

                                                                                                               (13) 

 

Optional secondary goal – maximise residual stock at the horizon 

 

𝑆𝑇𝑂𝐶𝐾 = 𝑁𝑘+1                                                                                                                                    (14) 

 

where Nk+1   is obtained from the recursion below. 

Constraints : 

1. Withdrawal-percentage limit 

 

 𝑎𝑡,𝑖𝑡
 ≤ 𝐴     𝑡 ∈  𝑇, 𝑖𝑡  ∈  𝐼                                                                                                                 (15) 

 

2. Cash actually withdrawn in stage t 

 

 π𝑡,𝑖𝑡
=  𝑎𝑡,𝑖𝑡

 (𝑁𝑡Ͼ)       𝑡 ∈  𝑇, 𝑖𝑡  ∈  𝐼                                                                                              (16) 

 

3. Evolution of the stock 

 

  𝑁𝑡+1 = (𝑁𝑡Ͼ) − π𝑡,𝑖𝑡
             𝑡 = 1, … , 𝑘 − 1     𝑡 ∈  𝑇, 𝑖𝑡  ∈  𝐼                                                 (17) 

 

We used this model on the illustrative example of problem. The data is made up, however 

it reflects possible data from reality. We have calculated four different scenarios of this 

problem. The common values of variables were: 

N1 = 100 

k=3 

Z=2 

For all illustrative scenarios, there are two possible actions Z: (𝑎𝑡,1𝑡
; 𝑎𝑡,2𝑡

) = (0; 𝐴).  

The changing parameters in each of these problems were Ͼ and A. In the Tab.7 are marked 

these four various combinations: 

 

Tab. 7: Four different illustrative scenarios. 

1. Combination: Ͼ=1,25; A=50% 2. Combination: Ͼ=1,2; A=50% 

3. Combination: Ͼ=1,5; A=33% 4. Combination: Ͼ=1,35; A=80% 
Source: Own Elaboration 
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We could use Excel and the add-on Solver to find the optimal solution for this model. 

This model is nonlinear, and for that matter we cannot use the simplex LP algorithm in the 

Solver, so we used the Generalized Reduced Gradient algorithm instead. The calculations of a 

problem with different input parameters, noted in Tab. 7, can be found in Tab. 8. 

Decision-makers could have three approaches to this problem. First, he does not trust the 

investment project and only cares about cash, which he has at the end of the investment period, 

which has the most liquid form, approach CASH. The second approach is that the decisionmaker 

fully trusts the investment project and believes that the offered stock will have total value even 

after time k, and he wants to have as much money bound to those stocks as possible, that is 

approach STOCK. The third approach is that the decisionmaker believes in the investment 

project but not fully and wants to have as much money as possible at the end of time k; that 

approach is called CASH+STOCK. 
 

Tab. 8: Results of Solver calculation of various combinations of problems parameters 

 Ͼ=1,25;A=50% Ͼ=1,2;A=50% Ͼ=1,5;A=33% Ͼ=1,35;A=80% 

CASH 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,50,50) 

CASH=126.96 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (50,50,50) 

CASH=117.6 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (33,33,33) 

CASH=149.25 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,80) 

CASH=196.83 

STOCK 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0) 

STOCK=195.31 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0) 

STOCK=172.8 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0) 

STOCK=337.5 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0) 

STOCK=245.04 

CASH+ 

STOCK 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0 or 50) 

CASH+ 

STOCK=195.31 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0 or 50) 

CASH+ 

STOCK=172.8 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0 or 33) 

CASH+ 

STOCK=337.5 

(𝑎1,𝑖1
∗ , 𝑎2,𝑖2

∗ , 𝑎3,𝑖3
∗ )

= (0,0,0 or 80) 

CASH+ 

STOCK=245.04 

Source: Own Elaboration 

 

4 Conclusion 

This article aimed to show how dynamic programming could be used to find the optimal 

use of processes in a simple problem. We believe that this feat was accomplished. We showed 

sample problems and the means of solving them. We even created a custom model that could 

be further extended to solve various economic or ecology-based problems. We used this method 

on a test problem, using manual calculation and even calculation based on the non-linear 

programming algorithm called Generalized Reduced Gradient. 

The following research will focus on further developing our custom model. It will be 

developed to calculate various management optimisation problems using replication model 

inspired mathematical model, as we believe it could bring different views on optimising 

problems in dynamic and deterministic settings, leading to more accurate, faster results. It can 

also be used to merge or synchronise different management optimisation problems, such as 

environmental and financial management problems, leading to a more sustainable and 

profitable future.  
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