Analýza výskytu mnohopočetných zdravotných komplikácií pri ochorení diabetes mellitus 2. typu

Authors

  • Erik Šoltés Katedra štatistiky, Fakulta hospodárskej informatiky
  • Patrícia Jánošíková

Keywords:

type 2 diabetes mellitus, multiple health complications, logistic regression, least squares means, CONTRAST statement, ESTIMATE statement

Abstract

The article analyses the incidence of multiple health complications in type 2 diabetes mellitus based on a sample of 821 patients. It is a statistical analysis based on the analysis of least squares means as well as testing and estimating linear combinations of binomial logistic regression model parameters using LSMEANS, CONTRAST and ESTIMATE statements in PROC GENMOD and PROC LOGISTIC in the SAS programming language. The aim of the article is to identify the factors that influence the occurrence of multiple complications in the disease and quantify their impact. The result of the research is also the identification of the groups of diabetics with the highest and the lowest risk in terms of the occurrence of multiple complications and the estimation of the probability of the occurrence of multiple complications for these groups of patients.

References

[1] Allison, P. D. (2012). Logistic regression using SAS: Theory and application. SAS institute.
[2] Bae, J., Kim, Y. Y., & Lee, J. S. (2017). Factors associated with subjective life expectancy: comparison with actuarial life expectancy. Journal of Preventive Medicine and Public Health, 50(4), 240.
[3] Bergelt, M., Fung Yuan, V., O’Brien, R., Middleton, L. E., & Martins dos Santos, W. (2020). Moderate aerobic exercise, but not anticipation of exercise, improves cognitive control. PLoS One, 15(11), e0242270.
[4] Byrne, K. M., Adler, P. B., & Lauenroth, W. K. (2017). Contrasting effects of precipitation manipulations in two Great Plains plant communities. Journal of vegetation science, 28(2), 238-249.
[5] Colin, T., Bruce, J., Meikle, W. G., & Barron, A. B. (2018). The development of honey bee colonies assessed using a new semi-automated brood counting method: CombCount. PLoS One, 13(10), e0205816.
[6] Darlington, R. B., & Hayes, A. F. (2016). Regression Analysis and Linear Models: Concepts, Applications, and Implementation. Guilford Publications.
[7] Haans, A. (2018). Contrast analysis: A tutorial. Practical Assessment, Research, and Evaluation, 23(1), 9.
[8] Huzar-Novakowiski, J., & Dorrance, A. E. (2018). Genetic diversity and population structure of Pythium irregulare from soybean and corn production fields in Ohio. Plant disease, 102(10), 1989-2000.
[9] IDF (2019). IDF Diabetes Atlas. 9th edition. International Diabetes Federation webpage: https://www.diabetesatlas.org/en (accessed on 13.06.2021).
[10] Košíková, M., & Šoltés, E. (2020). Analýza ekvivalentného disponibilného príjmu slovenských domácností s využitím príkazov CONTRAST a LSMEANS v procedúre GLM. Ekonomika a informatika, 18(2), 86-98.
[11] Lemus, H. (2016). Demystifying the CONTRAST and ESTIMATE Statement. Webpage: https://www.lexjansen.com/wuss/2016/97_Final_Paper_PDF.pdf
(accessed on 12.06.2021).
[12] Littell, R. C., Stroup, W. W., & Freund, R. J. (2010). SAS for Linear Models. 4th ed. Cary, NC: SAS Institude Inc.
[13] NCZI (2021). Činnosť diabetologických ambulancií v Slovenskej republike 2019. Národné centrum zdravotníckych informácií webpage:
http://data.nczisk.sk/statisticke_vystupy/Diabetologia/Cinnost_diabetologickych_ambulancii_v_SR_2019_sprava_k_publikovanym_vystupom.pdf (accessed on 12.06.2021).
[14] Olivera-La Rosa, A., Chuquichambi, E. G., & Ingram, G. P. (2020). Keep your (social) distance: Pathogen concerns and social perception in the time of COVID-19. Personality and Individual Differences, 166, 110200.
[15] Pasta, D. J. (2005). Parameterizing models to test the hypotheses you want: Coding indicator variables and modified continuous variables. In Proceedings of the Thirtieth Annual SAS Users Group International Conference (Paper 212-30).
[16] Quigley, M. Y., Rivers, M. L., & Kravchenko, A. N. (2018). Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Frontiers in Environmental Science, 6, 28.
[17] Rivers, J. W., Newberry, G. N., Schwarz, C. J., & Ardia, D. R. (2017). Success despite the stress: violet‐green swallows increase glucocorticoids and maintain reproductive output despite experimental increases in flight costs. Functional Ecology, 31(1), 235-244.
[18] SAS Institute Inc. (2015a). The GENMOD Procedure. In: SAS/STAT® 14.1 User’s Guide. Cary, NC: SAS Institute Inc.
[19] SAS Institute Inc. (2015b). The LOGISTIC Procedure. In: SAS/STAT® 14.1 User’s Guide. Cary, NC: SAS Institute Inc.
[20] Šoltés, E., Zelinová, S., & Bilíková, M. (2019). General linear model: An effective tool for analysis of claim severity in motor third party liability insurance. Statistics in Transition New Series, 20(4), 13-32.
[21] Vojtková, M., & Stankovičová, I. (2020). Viacrozmerné štatistické metódy s aplikáciami v softvéri SAS. Bratislava: LetraEdu.
[22] Zhao, J., Wang, C., Totton, S. C., Cullen, J. N., & O’Connor, A. M. (2019). Reporting and analysis of repeated measurements in preclinical animals experiments. PloS one, 14(8), e0220879.

Published

2021-12-17